Поможем написать любую работу на аналогичную тему
Теория погрешностей, использующая математический аппарат теории вероятностей, основывается на аналогии между появлением случайных погрешностей при многократно повторенных измерениях и появлением случайных событий. Из теории вероятностей известно, что для характеристики случайных величин, в нашем случае погрешностей прибора или измерения (вместе с их систематической составляющей), необходимо определить их закон распределения.
В теории случайных погрешностей формулируются две аксиомы. Аксиома симметрии (случайности) - при очень большом числе измерений случайные погрешности, равные по величине, но различные по знаку, встречаются одинаково часто. Аксиома распределения - чаще всего встречаются меньшие погрешности, а большие погрешности встречаются тем реже, чем они больше.
Если эти аксиомы соблюдаются, то при неограниченном увеличении числа независимых причин, вызывающих погрешности, мы имеем нормальный закон распределения случайной погрешности.(2.3)
где P(х) - плотность вероятности случайной величины X; s - среднее квадратическое отклонение.
Рис. 2.1. Интегральный и дифференциальный законы распределения
Одно из нарушений нормального закона распределения погрешностей при соблюдении аксиом состоит в появлении плосковершинности и островершинности, как показано на рис. 2.2.Рис. 2.2. Островершинное распределение
В пределе для плосковершинного распределения, когда уже аксиома не соблюдается, оно превращается в равномерное.
Рис. 2.3. Равномерное (равновероятное) распределение
Рис. 2.4. Двухмодальное распределение
Модой дискретной случайной величины называют ее наиболее вероятное значение, а для непрерывной случайной величины модой является то значение, при котором плотность вероятности достигает максимума. В пределе такое двухмодальное распределение может превратиться в распределение, когда единственно наблюдаемыми погрешностями будут только погрешности ±XmaX (см. рис. 2.4). Например, погрешность от люфта в кинетической цепи, погрешность от гистерезиса имеют вид двухзначной дискретной погрешности.
Предыдущие материалы: | Следующие материалы: |