Погрешности измерений. Классификация погрешностей.


Погрешность – это отклонение результата измерения от истинного  значения измеряемой величины.

Истинное значение ФВ может быть установлено лишь путем проведения бесконечного числа измерений, что невозможно реализовать на практике. Истинное значение измеряемой величины является недостижимым, а для анализа погрешностей в качестве значения ближайшего к истинному, используют действительное значение измеряемой величины, значение получают с использованием самых совершенных методом измерений и самых высокоточных средств измерений. Таким образом, погрешность измерений представляет собой отклонение от действительного значения ∆=Xд – Хизм

Погрешность сопровождает все измерения и связана с несовершенством метода, средства измерения,  условия измерения (когда они отличаются от н.у.).

В зависимости от принципов действия прибора те или иные факторы оказывают влияние.

Различают погрешности СИ и результата измерений за счет влияния внешних условий, особенностей измеряемой величины, несовершенства СИ.

Погрешность результата измерений включает в себя погрешность и средства измерений, также влияние условий проведения измерений, свойств объекта и измеряемой величины ∆ри=∆си+∆ву+∆св.о+∆сив.

Классификация погрешностей:

1) По способу выражения:

a) Абсолютная – погрешность, выраженная в единицах измеряемой величины ∆=Хд-Хизм

b) Относительная – погрешность, выраженная отношением абсолютной погрешности к результате измерений или действительному значению измеряемой величины γотн=(∆/Xд)* 100 .

c) Приведенная – это относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условию, принятому значению величины постоянному во всем диапазоне измерений (или части диапазона) γприв=(∆/Xнорм)*100, где Хнорм – нормирующее значение, установленное для приведенных значений. Выбор Хнорм производится в соответствии с ГОСТом 8.009-84. Это может быть верхний предел средства измерений, диапазон измерений, длина шкалы и т.л. Для множества средств измерений по приведенной погрешности устанавливают класс точности. Приведенная погрешность вводится потому что относительная характеризует погрешность только в данной точке шкалы и зависит от значения измеряемой величины.

2) По причинам и условиям возникновения:

a) Основная - это погрешность средств измерения, которое находятся в нормальных условиях эксплуатации, возникает из-за неидеальности функции преобразования и вообще неидеальности свойств средств измерений и отражает отличие действительной функции преобразования средств измерения в н.у. от номинальной нормированной документами на средства измерений (стандарты, тех. условия). Нормативными документами предусматриваются следующие н.у.:

  • Температура окружающей среды (20±5)°С;
  • Относительная влажность (65±15)%;
  • напряжение питания сети (220±4,4)В;
  • частота питания сети (50±1)Гц;
  • отсутствие эл. и магн. полей;
  • положение прибора горизонтальное, с отклонением ±2°.

Рабочие условия измерений – это условия, при которых значения влияющих величин находятся в пределах рабочих областей, для которых нормируют дополнительную погрешность или изменение показаний СИ.

Например, для конденсаторов нормируют дополнительную погрешность, связанную с отклонением температуры от нормальной; для амперметра отклонение частоты переменного тока 50 Гц.

b) Дополнительная – это составляющая погрешности средств измерений, возникающая дополнительно к основной, вследствие отклонения какой-либо из влияющих величин от нормы её значения или вследствие её выхода за пределы нормированной области значений. Обычно нормируется наибольшее значение дополнительной погрешности.

Предел допускаемой основной погрешности – наиб. основная погрешность средств измерения, при которой СИ может быть годным и допущено к применению по тех. условиям.

Предел допускаемой дополнительной погрешности – наибольшая дополнительная погрешность, при которой СИ допущено к применению.

Например, для прибора с КТ 1.0 приведенная дополнительная погрешность по температуре не должна превышать ±1% при изменении температуры на каждые 10°.

Пределы, допустимой основной и дополнительной погрешности могут быть выражены в форме абсолютной, относительной или приведенной погрешности.

      Для того чтобы иметь возможность выбирать СИ путем сравнения их характеристик вводят обобщенную характеристику данного типа СИ – класс точности (КТ). Обычно это предел допускаемых основной и дополнительной погрешностей. КТ позволяет судить в каких пределах находится погрешность СИ одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих СИ, т.к. погрешность зависит также от метода, условий измерений и т.д. Это нужно учитывать при выборе СИ в зависимости от заданной точности.

      Значения КТ устанавливаются в стандартах или в технических условиях или других нормативных документах и выбираются в соответствии с ГОСТ 8.401-80 из стандартного ряда значений. Например, для электромеханических приборов: 0,05; 0,1; 0,2; 0,5; 1.0; 2,5; 4.0; 6.0.

      Зная КТ СИ можно найти максимально допустимое значение абсолютной погрешности для всех точек диапазона измерений из формулы для приведенной погрешности: ∆maxдоп=(γприв*Xнорм)/100.

      КТ обычно наносят на шкалу прибора в разных формах, например,(2.5) (в кружочке).

3) По характеру изменений:

a) систематические – составляющая погрешности, остающаяся постоянной или изменяющаяся по известной закономерности во все время проведения измерений. Может быть исключена из результатов измерения путем регулировки или введением поправок. К ним относят: методические П, инструментальные П, субъективные П и т д. Такое качество СИ, когда систематическая погрешность близка к нуля называют правильностью.

b) случайные – это составляющие погрешности, изменяющиеся случайным образом, причины нельзя точно указать, а значит, и устранить нельзя. Приводят к неоднозначности показаний. Уменьшение возможно при многократных измерениях и последующей статистической обработке результатов. Т.е. усредненный результат многократных измерений ближе к действительному значению, чем результат одного измерения. Качество, которое характеризуется близостью к нулю случайной составляющей погрешности называется сходимостью показаний этого прибора.

c) промахи – грубые погрешности, связанные с ошибками оператора или неучтенными внешними воздействиями. Их обычно исключают из результатов измерений, не учитывают при обработке результатов.

4) По зависимости от измеряемой величины:

a) Аддитивные погрешности (не зависит от измеряемой величины)

b) Мультипликативные погрешности (пропорционально значению измеряемой величины).

Мультипликативная погрешность по-другому называется погрешностью чувствительности.

Аддитивная погрешность обычно возникает из-за шумов, наводок, вибраций, трения в опорах. Пример: погрешность нуля и погрешность дискретности (квантования).

Мультипликативная погрешность вызывается погрешностью регулировки отдельных элементов измерительных приборов. Например, из-за старения (погрешность чувствительности СИ).

 

В зависимости от того, какая погрешность прибора является существенной, нормируют метрологические характеристики.

Если существенна аддитивная погрешность, то предел допустимой основной погрешности нормируют в виде приведенной погрешности.

Если существенна мультипликативная погрешность, то предел допустимой основной погрешности определяют по формуле относительной погрешности.

Тогда относительная суммарная погрешность: γотн=Δ/Х= γадд + γмульт= γадд+ γмульт+ γадд*Xнорм/Х– γадд=±, где с= γадд+ γмульт; d= γадд.

Это способ нормирования метрологических характеристик когда аддитивная и мультипликативная составляющие погрешности соизмеримы, т.е. предел относительной допустимой основной погрешности выражается в двучленной формуле соответственно и обозначение КТ состоит из двух чисел, выражающих c и d в %, разделенных косой чертой. Например, 0.02/0,01. Это удобно, т.к. число с – это относит.погрешность СИ в н.у. Второй член формулы характеризует увеличение относительной погрешности измерения при увеличении величины Х, т.е. характеризует влияние аддитивной составляющей погрешности.

5) В зависимости от влияния характера изменения измеряемой величины:

a) Статическая – погрешность СИ при измерении неизменной или медленно изменяющейся величины.

b) Динамическая – погрешность СИ, возникающая при измерении быстро меняющейся во времени ФВ. Динамическая погрешность является следствием инерционности прибора.



Предыдущие материалы: Следующие материалы:
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.